مطالعه برخی ویژگی های گرافهای ناجابجایی وابسته به گروههای متناهی ناآبلی

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده ریاضی
  • نویسنده مهسا ظهورعطار
  • استاد راهنما علیرضا مقدم فر
  • سال انتشار 1393
چکیده

برای یک گروه ناآبلی متناهی، گراف ناجابجایی وابسته به آن به این شکل تعریف میشود که راسهای آن تمام عناصر غیرمرکزی گروه میباشد و دو راس بوسیله یک یال به یکدیگر وصل می شوند اگر و فقط اگر با عمل گروه با یکدیگر جابجا نشوند. در این پایان نامه نشان داده ایم که در صورتی که دو گروه ناآبلی پوچتوان با گرافهای ناجابجایی یکریخت نامنظم،مرتبه یکسان دارند. همچنین نشان می دهیم که اگر گراف ناجابجایی وابسته به یک گروه یک گراف چندبخشی کامل است آنگاه این گراف یک گراف قویا منظم با پارامترهای معین میباشد.

منابع مشابه

پیرامون بعضی از پارامترهای وابسته به گرافهای حلپذیر گروههای متناهی.

فرض کنیم ‎g‎ یک گروه باشد. گراف حلپذیر وابسته به گروه متناهی ‎g‎ را با نماد?_s (g) ‎ نشان می دهیم. در این گراف مجموعه رأس عبارت است از ?(g)‎‏، مجموعه مقسوم علیه های اول مرتبه ‎g‎ و دو رأس متمایز مانند ‎p‎ و ‎q‎ توسط یک یال بهم وصل می شوند چنانچه گروه ‎g‎ دارای یک زیرگروه حلپذیر مانند ‎h‎ باشد به طوری که ‎pq‎ مرتبه ‎h‎ را بشمارد. در این پایان نامه خواص معینی از گراف حلپذیر را مورد مطالعه قرار دا...

مشخصه سازی برخی گروههای ساده توسط گرافهای اول و ناجابجایی

برای گروه متناهی g و زیر مجموعهx از g، گراف جا به جایی رویx به صورت (g)? نشان داده می شود که مجموعه رئوس آن است و دو رأس y?xوx به وسیله یک یال به هم مرتبط می شوند، هرگاه جابجاگر x وy همانی باشد.گراف متمم از گراف جا به جایی(g)? جایی که (x?g(g با (g)? نشان داده می شود .(g)? گراف نا جا به جایی از خوانده می شود. در این گراف مجموعه رئوس(v(g)=g(g است و(x,y?v(g با یک یال به هم مرتبط هستند، اگر و تنها ...

15 صفحه اول

گراف ناجابجایی وابسته به گروه های متناهی

فرض کنیم g یک گروه نا آبلی باشد. گراف ناجابجایی وابسته به گروه g که با ?_g نشان داده می شود، یک گراف با مجموعه ی رئوس g(g) است که در آن z(g) مرکز گروه g است. همچنین دو رأس متمایز a و b در آن با هم مجاورند هرگاه ab?ba. زیر مجموعه ی s از مجموعه ی رئوس گراف ?_g، یک مجموعه ی غالب است هرگاه هر رأس v در v(?_g)s با حداقل یک رأس از s مجاور باشد. عدد غالب گراف ?_g، اندازه ی کوچک ترین مجموعه ی غالب گر...

برخی گراف های وابسته به زیرگروهها در گروههای متناهی

هدف از این پایان نامه معرفی دو گراف وابسته به یک زیرگروه از یک گروه می باشد. در این راستا ابتدا گراف کیلی گروه ‎g‎ وابسته به زیرگروه h‎ را که بنام گراف همرده کیلی معروف است را مورد مطالعه قرار می دهیم که در آن رئوس گراف عبارتند از مجموعه ی تمام همرده های متمایز راست ‎ h ‎ در ‎ g ‎ است و رأس ‎ hx ‎ به رأس ‎ hy ‎ متصل است, اگر ‎ yx^{-1} in hsh ‎ که در آن ‎ s ‎ یک زیرمجموعه از ‎ g ‎ است. گراف دیگر...

سرشت نمایی گروههای ساده ی متناهی توسط گراف ناجابجایی وابسته به آن ها

مطالعه ی ساختارهای جبری با استفاده از ویژگیهای گراف، موضوع پژوهشی جالبی در چند دهه ی گذشته بوده است. در این سالها مقالات زیادی چاپ شده است که در آن ها به یک گروه یا یک حلقه (یا در حالت کلی یک ساختار جبری ) یک گراف وابسته شده است. یکی از گرافهای معروف وابسته به یک گروه عبارت است از گراف ناجابجایی که به این صورت تعریف می شود: رئوس این گراف عبارتند از اعضای مجموعه ی اعضای غیرمرکزی و دو رأس مانند x...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023